The function $f:[-1 / 2,1 / 2,1 / 2] \rightarrow[-\pi / 2, \pi / 2]$, defined by $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$, is
(a) bijection
(b) injection but not a surjection
(c) surjection but not an injection
(d) neither an injection nor a surjection
$f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$
$\Rightarrow f(x)=3 \sin ^{-1} x$
Injectivity:
Let $x$ and $y$ be two elements in the domain $\left[\frac{-1}{2}, \frac{1}{2}\right]$, such that
$f(x)=f(y)$
$\Rightarrow 3 \sin ^{-1} x=3 \sin ^{-1} y$
$\Rightarrow \sin ^{-1} x=\sin ^{-1} y$
$\Rightarrow x=y$
So. $f$ is one-one.
Surjectivity:
Let y be any element in the co-domain, such that
$f(x)=y$
$\Rightarrow 3 \sin ^{-1}(x)=y$
$\Rightarrow \sin ^{-1}(x)=\frac{y}{3}$
$\Rightarrow x=\sin \frac{y}{3} \in\left[\frac{-1}{2}, \frac{1}{2}\right]$
$\Rightarrow f$ is onto.
$\Rightarrow f$ is a bijection.
So, the answer is (a).