Question:
The function $y=a \log x+b x^{2}+x$ has extreme values at $x=1$ and $x=2$. Find $a$ and $b$
Solution:
Given : $f(x)=y=a \log x+b x^{2}+x$
$\Rightarrow f^{\prime}(x)=\frac{a}{x}+2 b x+1$
Since, $f^{\prime}(x)$ has extreme value $s$ at $x=1$ and $x=2, f^{\prime}(1)=0 .$
$\Rightarrow \frac{a}{1}+2 b(1)+1=0$
$\Rightarrow a=-1-2 b$ .....(1)
$f^{\prime}(2)=0$
$\Rightarrow \frac{a}{2}+2 b(2)+1=0$
$\Rightarrow a+8 b=-2$
$\Rightarrow a=-2-8 b$ .....(2)
From eqs. (1) and (2), we get
$-2-8 b=-1-2 b$
$\Rightarrow 6 b=-1$
$\Rightarrow b=\frac{-1}{6}$
Substituting $b=\frac{-1}{6}$ in eq. (1), we get
$a=-1+\frac{1}{3}=\frac{-2}{3}$