The function $f(x)=\sin ^{-1}(\cos x)$ is
(a) discontinuous at x = 0
(b) continuous at x = 0
(c) differentiable at x = 0
(d) none of these
(b) continuous at x = 0
Given: $f(x)=\sin ^{-1}(\cos x)$
Continuity at x = 0:
We have,
$(\mathrm{LHL}$ at $x=0)$
$\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{h \rightarrow 0} \sin ^{-1}\{\cos (0-h)\}$
$=\lim _{h \rightarrow 0} \sin ^{-1}(\cos h)$
$=\sin ^{-1}(1)$
$=\frac{\pi}{2}$
(RHL at x = 0)
$\lim _{x \rightarrow 0^{+}} f(x)$
$=\lim _{h \rightarrow 0} \sin ^{-1} \cos (0+h)$
$=\lim _{h \rightarrow 0} \sin ^{-1}(\cos h)$
$=\sin ^{-1}(1)$
$=\frac{\pi}{2}$
$f(0)=\sin ^{-1}(\cos 0)$
$=\sin ^{-1}(1)$
$=\frac{\pi}{2}$
Differentiability at $x=0$ :
(LHD at $x=0$ )
$\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} \cos (0-h)-\frac{\pi}{2}}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} \cos (-h)-\frac{\pi}{2}}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} \cos (h)-\frac{\pi}{2}}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-h\right)\right\}-\frac{\pi}{2}}{-h}$
$=\lim _{h \rightarrow 0} \frac{-h}{-h}$
$=1$
RHD at x = 0
$\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} \cos (0+h)-\frac{\pi}{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} \cos (h)-\frac{\pi}{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-h\right)\right\}-\frac{\pi}{2}}{-h}$
$=\lim _{h \rightarrow 0} \frac{-h}{h}$
$\therefore \mathrm{LHD} \neq \mathrm{RHD}$
Hence, the function is not differentiable at x = 0 but is continuous at x = 0.