Question:
The function
$f(x)=\frac{4 x^{3}-3 x^{2}}{6}-2 \sin x+(2 x-1) \cos x:$
Correct Option: 1
Solution:
$f(x)=\frac{4 x^{3}-3 x^{2}}{6}-2 \sin x+(2 x-1) \cos x$
$f^{\prime}(x)=\left(2 x^{2}-x\right)-2 \cos x+2 \cos x-\sin x(2 x-1)$
$=(2 x-1)(x-\sin x)$
for $x>0, x-\sin x>0$
$x<0, x-\sin x<0$
for $x \in(-\infty, 0] \cup\left[\frac{1}{2}, \infty\right), f^{\prime}(x) \geq 0$
for $x \in\left[0, \frac{1}{2}\right], f^{\prime}(x) \leq 0$
$\Rightarrow f(\mathrm{x})$ increases in $\left[\frac{1}{2}, \infty\right) .$