Question:
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Solution:
Let $a$ be the first term and $r$ be the common ratio of the given G.P.
$\therefore a_{4}=27$ and $a_{7}=729$
$\Rightarrow a r^{3}=27$ and $a r^{6}=729$
$\Rightarrow \frac{a r^{6}}{a r^{3}}=\frac{729}{27}$
$\Rightarrow r^{3}=3^{3}$
$\Rightarrow r=3$
Putting $r=3$ in $a r^{3}=27$
$a(3)^{3}=27$
$\Rightarrow a=1$
Thus, the given G.P. is $1,3,9, \ldots$