Question:
The following system of linear equations
$7 x+6 y-2 z=0$
$3 x+4 y+2 z=0$
$x-2 y-6 z=0$, has
Correct Option: , 4
Solution:
The given system of linear equations
$7 x+6 y-2 z=0$...(i)
$3 x+4 y+2 z=0$...(ii)
$x-2 y-6 z=0$...(iii)
Now, determinant of coefficient matrix
$\Delta=\left|\begin{array}{ccc}7 & 6 & -2 \\ 3 & 4 & 2 \\ 1 & -2 & -6\end{array}\right|$
$=7(-20)-6(-20)-2(-10)$
$=-140+120+20=0$
So, there are infinite non-trivial solutions.
From eqn. (i) $+3 \times$ (iii); we get
$10 x-20 z=0 \Rightarrow x=2 z$
Hence, there are infinitely many solutions $(x, y, z)$
satisfying $x=2 z$.