The following relations are defined on the set of real numbers.
(i) $a R b$ if $a-b>0$
(ii) $a R b$ if $1+a b>0$
(iii) $a R b$ if $|a| \leq b$
Find whether these relations are reflexive, symmetric or transitive.
(i)
Reflexivity: Let a be an arbitrary element of R. Then,
$a \in R$
But $a-a=0 \ngtr 0$
So, this relation is not reflexive.
Symmetry:
Let $(a, b) \in R$
$\Rightarrow a-b>0$
$\Rightarrow-(b-a)>0$
$\Rightarrow b-a<0$
So, the given relation is not symmetric.
Transitivity:
Let $(a, b) \in R$ and $(b, c) \in R$. Then,
$a-b>0$ and $b-c>0$
Adding the two, we get
$a-b+b-c>0$
$\Rightarrow a-c>0$
$\Rightarrow(a, c) \in R$
So, the given relation is transitive.
(ii)
Reflexivity: Let a be an arbitrary element of R. Then,
$a \in R$
$\Rightarrow 1+a \times a>0$
i. e. $1+a^{2}>0$ [Since, square of any number is positive]
So, the given relation is reflexive.
Symmetry:
Let $(a, b) \in R$
$\Rightarrow 1+a b>0$
$\Rightarrow 1+b a>0$
$\Rightarrow(b, a) \in R$
So, the given relation is symmetric.
Transitivity:
Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow 1+a b>0$ and $1+b c>0$
But $1+a c \ngtr 0$
$\Rightarrow(a, c) \notin R$
So, the given relation is not transitive.
(iii)
Reflexivity: Let a be an arbitrary element of R. Then,
$a \in R$
$\Rightarrow|a| \nless a$ $[$ Since, $|a|=a]$
So, $R$ is not reflexive
Symmetry:
Let $(a, b) \in R$
$\Rightarrow|a| \leq b$
$\Rightarrow|b| \notin a$ for all $a, b \in R$
$\Rightarrow(b, a) \notin R$
So, $R$ is not symmetric.
Transitivity:
Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow|a| \leq b$ and $|b| \leq c$
Multiplying the corresponding sides, we get
$|a||b| \leq b c$
$\Rightarrow|a| \leq c$
$\Rightarrow(a, c) \in R$
Thus, $R$ is transitive.