The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms isĀ
$\frac{-a(p+q) q}{p-1}$
[Hint: Required sum $=\mathrm{S}_{\mathrm{p}+\mathrm{q}}-\mathrm{S}_{\mathrm{p}}$ ]
Given first term is ' $\mathrm{a}$ ' and sum of first $\mathrm{p}$ terms is $\mathrm{S}_{p}=0$
Now we have to find the sum of next q terms
Therefore, total terms are $p+q$
Hence, sum of all terms minus the sum of the first $p$ terms will give the sum of
next q terms
But sum of first $p$ terms is 0 hence sum of next $q$ terms will be the same as sum
of all terms
So, we have to find sum of $p+q$ terms
Sum of $n$ terms of $A P$ is given by $S_{n}=\left(\frac{n}{2}\right)(2 a+(n-1) d)$
Where $\mathrm{a}$ is first term and $\mathrm{d}$ is the common difference
Using the given hint we get
$\Rightarrow$ required sum $=\mathrm{S}_{p+q}-\mathrm{S}_{p}$
Using $\mathrm{S}_{\mathrm{n}}$ formula
$\Rightarrow$ required sum $=\frac{p+q}{2}(2 a+(p+q-1) d)$
Now we have to find $d$
We use the given $\mathrm{S}_{p}=0$ to find $\mathrm{d}$
$\Rightarrow S_{p}=\frac{p}{2}(2 a+(p-1) d)$
$\Rightarrow 0=2 a+(p-1) d$
$\Rightarrow d=-\frac{2 a}{p-1}$
Put this value of $d$ in 1 we get
$\Rightarrow$ required sum $=\frac{p+q}{2}\left(2 a+(p+q-1)\left(-\frac{2 a}{p-1}\right)\right)$
Taking LCM and simplifying we get
$=\frac{p+q}{2}\left(2 a-\frac{2 a p}{p-1}-\frac{2 a q}{p-1}+\frac{2 a}{p-1}\right)$
On computing we get
$=a(p+q)\left(1-\frac{p}{p-1}-\frac{q}{p-1}+\frac{1}{p-1}\right)$
$=a(p+q)\left(1+\frac{-(p-1)}{p-1}-\frac{q}{p-1}\right)$
$=\mathrm{a}(\mathrm{p}+\mathrm{q})\left(1+(-1)-\frac{\mathrm{q}}{\mathrm{p}-1}\right)$
$=-\frac{a(p+q) q}{p-1}$
Hence proved.