The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Let a be the first term and r be the common ratio of the G.P.
$a_{2}=24$
$\Rightarrow a r^{2-1}=24$
$\Rightarrow a r=24$ ....(i)
Similarly, $a_{5}=81$
$\Rightarrow a r^{5-1}=24$
$\Rightarrow a r^{4}=81$
$\Rightarrow \frac{24 \times r^{4}}{r}=81$ [From (i)]
$\Rightarrow r^{3}=\frac{81}{24}$
$\therefore r^{3}=\frac{27}{8}$
$\Rightarrow r=\frac{3}{2}$
Putting $r=\frac{3}{2}$ in (i)
$3 a=48$
$\Rightarrow \mathrm{a}=16$
So, the geometric series is $16+24+36+\ldots+16\left(\frac{3}{2}\right)^{8}$
And, $S_{8}=16\left(\frac{\left(\frac{3}{2}\right)^{8}-1}{\frac{3}{2}-1}\right)$
$\Rightarrow S_{8}=32\left(\frac{6561-256}{256}\right)=\frac{32 \times 6305}{256}=\frac{6305}{8}$