The equation of the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$ is
A. $x-3 y=8$
B. $x-3 y+8=0$
C. $x+3 y \pm 8=0$
D. $x=3 y=0$
Given that the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$.
Let $(a, b)$ be the point of intersection of both the curve.
$\Rightarrow 3 a^{2}-b^{2}=8 \ldots(1)$
and $a+3 b=k \ldots(2)$
Now, $3 x^{2}-y^{2}=8$
On differentiating w.r.t. $x$,
$6 x-2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{3 x}{y}$
Slope of the tangent at $(a, b)=\frac{3 a}{b}$
Slope of the normal at $(a, b)=\frac{-b}{3 a}$
Slope of normal = Slope of the line
$\Rightarrow \frac{-b}{3 a}=\frac{-1}{3}$
$\Rightarrow \mathrm{b}=\mathrm{a} \ldots .(3)$
Put (3) in (1),
$3 a^{2}-a^{2}=8$
$\Rightarrow 2 a^{2}=8$
$\Rightarrow a=\pm 2$
Case: 1
When $a=2, b=2$
$\Rightarrow x+3 y=k$
$\Rightarrow k=8$
Case: 2
When $a=-2, b=-2$
$\Rightarrow x+3 y=k$
$\Rightarrow k=-8$
From both the cases,
The equation of the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$ is $x+3 y=\pm 8$.