Question:
The equation $3 \cos x+4 \sin x=6$ has .... solution.
(a) finite
(b) infinite
(c) one
(d) no
Solution:
(d) no
Given equation:
$3 \cos x+4 \sin x=6 \quad \ldots(\mathrm{i})$
Thus, the equation is of the form $a \cos x+b \sin x=c$, where $a=3, b=4$ and $c=6$.
Let:
$a=3=r \cos \alpha$ and $b=4=r \sin \alpha$
Now,
$\tan \alpha=\frac{b}{a}=\frac{4}{3}$
$\Rightarrow \alpha=\tan ^{-1}\left(\frac{4}{3}\right)$
Aso,
$r=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=\sqrt{25}=5$
On putting $a=3=r \cos \alpha$ and $b=4=r \sin \alpha$ in equation (i), we get:
$r \cos \alpha \cos \theta+\sin \alpha \sin \theta=6$
$\Rightarrow r \cos (\theta-\alpha)=6$
$\Rightarrow 5 \cos (\theta-\alpha)=6$
$\Rightarrow \cos (\theta-\alpha)=\frac{6}{5}$
From here, we cannot find the value of $\theta$.