The entropy of any system is given by
$S=\alpha^{2} \beta \ln \left[\frac{\mu \mathrm{kR}}{\mathrm{J} \beta^{2}}+3\right]$
where $\alpha$ and $\beta$ are the constants. $\mu, J, k$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant respectively.
$\left[\operatorname{Take} S=\frac{\mathrm{dQ}}{\mathrm{T}}\right]$
Choose the incorrect option from the following :
Correct Option: , 4
$\mathrm{S}=\alpha^{2} \beta \ln \left(\frac{\mu \mathrm{KR}}{\mathrm{J} \beta^{2}}+3\right)$
$\mathrm{S}=\frac{\mathrm{Q}}{\mathrm{T}}=$ joulek $/ \mathrm{k}$
$\left[\alpha^{2} \beta\right]=$ Joule $/ \mathrm{k}$
$\mathrm{PV}=\mathrm{nRT} \quad\left[\frac{\mu \mathrm{KR}}{\mathrm{J} \beta^{2}}\right]=1$
$R=\frac{\text { Joule }}{K}$
$\Rightarrow \mathrm{R}=\frac{\text { Joule }}{\mathrm{K}}, \mathrm{K}=\frac{\text { Joule }}{\mathrm{R}}$
$\Rightarrow \beta=\left(\frac{\text { Joule }}{K}\right)$
$\alpha^{2} \beta=\left(\frac{\text { Joule }}{\mathrm{K}}\right)$
$\Rightarrow \alpha=$ dimensionless