The electric field of a plane polarized electromagnetic wave in free space at time t=0 is given by an expression
The electric field of a plane polarized electromagnetic wave in free space at time $t=0$ is given by an expression
$\overrightarrow{\mathrm{E}}(x, y)=10 \hat{\mathrm{j}} \cos [(6 x+8 z)]$
The magnetic field $\overrightarrow{\mathrm{B}}(x, z, t)$ is given by: ( $\mathrm{c}$ is the velocity of light)
Correct Option: 2,
(2) $\overrightarrow{\mathrm{E}}=10 \hat{\mathrm{j}} \cos [(6 \hat{\mathrm{i}}+8 \hat{\mathrm{k}}) \cdot(x \hat{\mathrm{i}}+\mathrm{zk})]$
$=10 \hat{\mathrm{j}} \cos [\overrightarrow{\mathrm{K}} \cdot \overrightarrow{\mathrm{r}}]$
$\therefore \overrightarrow{\mathrm{K}}=6 \hat{\mathrm{i}}+8 \hat{\mathrm{K}} ;$ direction of waves travel
i. e. direction of ' $c$ '.
$\hat{\mathrm{C}} \times \hat{\mathrm{E}}=\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}}{5}$
$\overrightarrow{\mathrm{B}}=\frac{\mathrm{E}}{\mathrm{C}}=\frac{10}{\mathrm{C}}$
$\therefore \overrightarrow{\mathrm{B}} \frac{10}{\mathrm{C}}\left(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}}{5}\right)=\left(\frac{-8 \hat{\mathrm{i}}+6 \hat{\mathrm{k}}}{\mathrm{C}}\right)$
or, magnetic field $\overrightarrow{\mathrm{B}}(\mathrm{x}, \mathrm{z}, \mathrm{t})=\frac{1}{\mathrm{C}}$
$(6 \hat{k}-8 \hat{i}) \cos (6 x+8 z-10 c t)$