The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm2 is
(a)Rs. 2.00
(b) Rs. 2.16
(c) Rs. 2.48
(d) Rs. 3.00
(b) Since,the edges of a triangular board are $a=6 \mathrm{~cm} b=8 \mathrm{~cm}$ and $c=10 \mathrm{~cm}$.
Now, semi-perimeter of a triangular board,
$s=\frac{a+b+c}{2}$
$=\frac{6+8+10}{2}=\frac{24}{2}=12 \mathrm{~cm}$
Now, area of a triangular board $=\sqrt{s(s-a)(s-b)(s-c)}$ [by Heron's formula]
$=\sqrt{12(12-6)(12-8)(12-10)}$
$=\sqrt{12 \times 6 \times 4 \times 2}$
$=\sqrt{(12)^{2} \times(2)^{2}}$
$=12 \times 2=24 \mathrm{~cm}^{2}$
Since, the cost of painting for area $1 \mathrm{~cm}^{2}=₹ 0.09$
$\therefore$ Cost of paint for area $24 \mathrm{~cm}^{2}=0.09 \times 24=₹ 2.16$
Hence, the cost of a triangular board is $₹ 2.16$.