Question:
The domain of the function $f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]+2}}$ is __________ .
Solution:
$f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]+2}}$
Since [x]2 − 3[x] + 2 = 0
if [x]2 − 2[x] − [x] + 2 = 0
[x] ([x] − 2) −1 ([x] − 2) = 0
i.e [x] = 2 or [x] = 1
f(x) is defined only if [x]2 − 3[x] + 2 > 0
i.e ([x] −2) ([x]−1) > 0
[x] > 2 or [x] < 1
i.e [x] ≥ 3 or [x] ≤ 0
i.e x ∈[3, ∞) or x∈(−∞, 1)
i.e Domain of f(x) is [3, ∞) ∪ (−∞, 1)
i.e (−∞, 1) ∪ [3, ∞)