Question:
The domain of the function $f(x) \sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$ is equal to
(a) (−∞, −1) ∪ (1, 4)
(b) (−∞, −1] ∪ (1, 4]
(c) (−∞, −1) ∪ [1, 4]
(d) (−∞, −1) ∪ [1, 4)
Solution:
$f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$
for $\sqrt{4-x}$
4 − x ≥ 0
i.e 4 ≥ x
i.e x ≤ 4
and $\frac{1}{\sqrt{x^{2}-1}}$
Since $x^{2}-1>0 \quad\left(\because x^{2}-1=0\right.$ is not defined for $\left.\frac{1}{\sqrt{x^{2}-1}}\right)$
i.e x2 > 1
i.e x < − 1 or x > 1
for $\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$, Domain is $(-\infty,-1) \cup(1,4]$