Question:
The domain of definition of the function $f(x)=\sqrt{x-1}+\sqrt{3-x}$ is
(a) [1, ∞)
(b) (−∞, 3)
(c) (1, 3)
(d) [1, 3]
Solution:
(d) [1, 3]
$f(x)=\sqrt{x-1}+\sqrt{3-x}$
For $\mathrm{f}(\mathrm{x})$ to be defined,
$(x-1) \geq 0$
$\Rightarrow x \geq 1 \quad \ldots(1)$
and $(3-x) \geq 0$
$\Rightarrow 3 \leq x \quad \ldots(2)$
From $(1)$ and $(2)$,
$x \in[1,3]$