Question:
The domain of definition of the function f(x) = log |x| is
(a) R
(b) (−∞, 0)
(c) (0, ∞)
(d) R − {0
Solution:
(d) R − {0}
f(x) = log |x|
For $f(x)$ to be defined,
$|\mathrm{x}|>0$, which is always true.
But $|x| \neq 0$
$\Rightarrow x \neq 0$
Thus, $\operatorname{dom}(\mathrm{f})=\mathrm{R}-\{0\}$.