Question:
The domain of definition of $f(x)=\sqrt{x-3-2 \sqrt{x-4}}-\sqrt{x-3+2 \sqrt{x-4}}$ is
(a) [4, ∞)
(b) (−∞, 4]
(c) (4, ∞)
(d) (−∞, 4)
Solution:
(a) [4, ∞)
$f(x)=\sqrt{x-3-2 \sqrt{x-4}}-\sqrt{x-3+2 \sqrt{x-4}}$
For $f(x)$ to be defined, $x-4 \geq 0$
$\Rightarrow x-4 \geq 0$
$\Rightarrow x \geq 4$ .....(1)
Also, $x-3-2 \sqrt{x-4} \geq 0$
$\Rightarrow x-3-2 \sqrt{x-4} \geq 0$
$\Rightarrow x-3 \geq 2 \sqrt{x-4}$
$\Rightarrow(x-3)^{2} \geq(2 \sqrt{x-4})^{2}$
$\Rightarrow x^{2}+9-6 x \geq 4(x-4)$
$\Rightarrow x^{2}-10 x+25 \geq 0$
$\Rightarrow(x-5)^{2} \geq 0$, which is always true.
Similarly, $x-3+2 \sqrt{x-4} \geq 0$ is always true.
Thus, $\operatorname{dom}(\mathrm{f}(\mathrm{x}))=[4, \infty)$