The domain of definition of f(x) =

Question:

The domain of definition of $f(x)=\sqrt{4 x-x^{2}}$ is

(a) R − [0, 4]

(b) R − (0, 4)

(c) (0, 4)

(d) [0, 4]

Solution:

(d) [0, 4]

Given:

$f(x)=\sqrt{4 x-x^{2}}$

Clearly, f (x) assumes real values if

$4 x-x^{2} \geq 0$

$\Rightarrow x(4-x) \geq 0$

$\Rightarrow-x(x-4) \geq 0$

$\Rightarrow x(x-4) \leq 0$

$\Rightarrow x \in[0,4]$

Hence, domain (f )= [0, 4].

Leave a comment