Question:
The domain of definition of $f(x)=\sqrt{\frac{x+3}{(2-x)(x-5)}}$ is
(a) (−∞, −3] ∪ (2, 5)
(b) (−∞, −3) ∪ (2, 5)
(c) (−∞, −3) ∪ [2, 5]
(d) None of these
Solution:
(a) (−∞, −3] ∪ (2, 5)
$f(x)=\sqrt{\frac{x+3}{(2-x)(x-5)}}$
For $\mathrm{f}(\mathrm{x})$ to be defined,
$(2-x)(x-5) \neq 0$
$\Rightarrow x \neq 2,5$ ....(1)
Also, $\frac{(x+3)}{(2-x)(x-5)} \geq 0$
$\Rightarrow \frac{(x+3)(2-x)(x-5)}{(2-x)^{2}(x-5)^{2}} \geq 0$
$\Rightarrow(x+3)(x-2)(x-5) \leq 0$
$\Rightarrow x \in(-\infty,-3] \cup(2,5) \quad \ldots(2)$
From $(1)$ and $(2)$
$x \in(-\infty,-3] \cup(2,5)$