The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is
A. $\frac{130}{17 \sqrt{29}}$
B. $\frac{13}{7 \sqrt{29}}$
c. $\frac{130}{7}$
D. None of these
A. $\frac{130}{17 \sqrt{29}}$
Explanation:
Given two lines are 2x – 3y + 5 = 0 … (i)
And 3x + 4y = 0 … (ii)
Now, point of intersection of these lines can be find out as
Multiplying equation (i) by 3, we get
6x – 9y + 15 = 0 … (iii)
Multiplying equation (ii) by 2, we get
6x + 8y = 0 … (iv)
On subtracting equation (iv) from (iii), we get
6x – 9y + 15 – 6x – 8y = 0
⇒ – 17y + 15 = 0
⇒ – 17y = -15
$\Rightarrow y=\frac{15}{17}$
On putting value of $y$ in equation (ii), we get
$3 x+4\left(\frac{15}{17}\right)=0$
$\Rightarrow 3 x=-\frac{60}{17}$
$\Rightarrow \mathrm{x}=-\frac{20}{17}$
So, the point of intersection of given two lines is
$(x, y)=\left(-\frac{20}{17}, \frac{15}{17}\right)$
Now, perpendicular distance from the point $\left(-\frac{20}{17}, \frac{15}{17}\right)$ to the given line $5 x-2 y$ $=0$
$d=\left|\frac{5\left(-\frac{20}{17}\right)-2\left(\frac{15}{17}\right)}{\sqrt{(5)^{2}+(-2)^{2}}}\right|$
$\Rightarrow \mathrm{d}=\left|\frac{-\frac{100}{17}-\frac{30}{17}}{\sqrt{25+4}}\right|$
$\Rightarrow \mathrm{d}=\frac{130}{17 \sqrt{29}}$
Hence, the correct option is (a)