Question:
The distance of line $3 y-2 z-1=0=3 x-z+4$ from the point $(2,-1,6)$ is :
Correct Option: , 3
Solution:
$3 y-2 z-1=0=3 x-z+4$
$3 \mathrm{y}-2 \mathrm{z}-1=0 \quad$ D.R's $\Rightarrow(0,3,-2)$
$3 x-z+4=0 \quad$ D.R's $\Rightarrow(3,-1,0)$
Let DR's of given line are $\mathrm{a}, \mathrm{b}, \mathrm{c}$
Now $3 b-2 c=0 \& 3 a-c=0$
$\therefore 6 a=3 b=2 c$
$a: b: c=3: 6: 9$
Any pt on line
$3 \mathrm{~K}-1,6 \mathrm{~K}+1,9 \mathrm{~K}+1$
Now $3(3 \mathrm{~K}-1)+6(6 \mathrm{~K}+1) 1+9(9 \mathrm{~K}+1)=0$
$\Rightarrow \mathrm{K}=\frac{1}{3}$
Point on line $\Rightarrow(0,3,4)$
Given point $(2,-1,6)$
$\Rightarrow$ Distance $=\sqrt{4+16+4}=2 \sqrt{6}$
Option (3)