The distance moved by the particle in time

Question:

The distance moved by the particle in time $t$ is given by $x=t^{3}-12 t^{2}+6 t+8$. At the instant when its acceleration is zero, the velocity is

(a) 42

(b) $-42$

(c) 48

(d) $-48$

Solution:

(b) $-42$

$x=t^{3}-12 t^{2}+6 t+8$

$\Rightarrow \frac{d x}{d t}=3 t^{2}-24 t+6$

$\Rightarrow \frac{d^{2} x}{d t^{2}}=6 t-24$

$\Rightarrow 6 t-24=0 \quad[\because$ acceleration is zero $]$

$\Rightarrow t=4$

$\mathrm{So}$,

Velocity at $t=4$

$\Rightarrow \frac{d x}{d t}=3(4)^{2}-24 \times 4+6$

$\Rightarrow \frac{d x}{d t}=48-96+6$

$\Rightarrow \frac{d x}{d t}=-42$

Leave a comment