The dimension of stopping potential $V_{0}$ in photoelectric effect in units of Planck's constant ' $h$ ', speed of light ' $c$ ' and Gravitational constant ' $G$ ' and ampere $A$ is:
Correct Option: , 4
(4)
Stopping potential $\left(V_{0}\right) \propto h^{x} I^{y} G^{Z} C^{r}$
Here, $h=$ Planck's constant $=\left[M L^{2} T^{-1}\right]$
$I=$ current $=[A]$
$G=$ Gravitational constant $=\left[M^{-1} L^{3} T^{-2}\right]$
and $c=$ speed of light $=\left[L T^{-1}\right]$
$V_{0}=$ potential $=\left[M L^{2} T^{-3} A^{-1}\right]$
$\therefore\left[M L^{2} T^{-3} A^{-1}\right]=\left[M L^{2} T^{-1}\right]^{\mathrm{x}}[A]^{\mathrm{y}}\left[M^{-1} L^{3} T^{-2}\right]^{\mathrm{z}}\left[L T^{-1}\right] r$
$M^{x-z} ; L^{2 x+3 z+r} ; T^{-x-2 z-r} ; A^{y}$
Comparing dimension of $\mathrm{M}, \mathrm{L}, \mathrm{T}, \mathrm{A}$, we get
$y=-1, x=0, z=-1, r=5$
$\therefore \quad V_{0} \propto h^{0} I^{-1} G^{-1} C^{5}$