Question:
The difference of two numbers is 4 . If the difference of their reciprocal is $\frac{4}{21}$, find the numbers.
Solution:
Let one numbers be $x$ then other $(x+4)$.
Then according to question
$\frac{1}{x}-\frac{1}{(x+4)}=\frac{4}{21}$
$\frac{4}{\left(x^{2}+4 x\right)}=\frac{4}{21}$
By cross multiplication
$4 x^{2}+16 x=84$
$4 x^{2}+16 x-84=0$
$4\left(x^{2}+4 x-21\right)=0$
$\left(x^{2}+4 x-21\right)=0$
$x^{2}+7 x-3 x-21=0$
$x(x+7)-3(x+7)=0$
$(x+7)(x-3)=0$
$(x+7)=0$
$x=-7$
Or
$(x-3)=0$
$x=3$
Since, x being a number,
Therefore,
When $x=-7$ then
$x+4=-7+4$
$=-3$
And when $x=3$ then
$x+4=3+4$
$=7$
Thus, two consecutive number be either 7,3 or $-7,-3$