The difference between the two acute angles of a right triangle is

Question:

The difference between the two acute angles of a right triangle is $\left(\frac{\pi}{5}\right)^{\mathrm{c}}$

 

Solution:

The angle in degree $=\frac{\pi}{5} \times \frac{180}{\pi}=36^{\circ}$

$=36^{\circ}$

Let, two acute angles are x and y

So,

ATQ, $x-y=36^{\circ} . .$

$x+y=90^{\circ} \ldots \ldots(2)$

Solving 1 & 2, we get;

$\Rightarrow 2 x=126^{\circ}$

$\Rightarrow x=63^{\circ}$

Putting the value of x in 2, we get;

$\Rightarrow 63^{\circ}+y=90^{\circ}$

$\Rightarrow y=27^{\circ}$

So, Two acute angles are $63^{\circ} \& 27^{\circ}$

 

Leave a comment