The difference between the two acute angles of a right-angled triangle is $\frac{2 \pi}{5}$ radians. Express the angles in degrees.
Given:
Difference between two acute angles of a right-angled triangle $=\frac{2 \pi}{5} \mathrm{rad}$
$\because 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}$
$\therefore \frac{2 \pi}{5} \mathrm{rad}=\left(\frac{180}{\pi} \times \frac{2 \pi}{5}\right)^{\circ}$
$=(36 \times 2)^{\circ}$
$=72^{\circ}$
Now, let one acute angle of the triangle be $x^{\circ}$.
Therefore, the other acute angle will be $90^{\circ}-x^{\circ}$.
Now,
$x^{\circ}-\left(90^{\circ}-x^{\circ}\right)=72^{\circ}$
$\Rightarrow x-90+x=72$
$\Rightarrow 2 x=162$
$\Rightarrow x=81$
Thus, we have:
$x^{\circ}=81^{\circ}$
And,
$90^{\circ}-x^{\circ}=90^{\circ}-81^{\circ}=9^{\circ}$