The difference between the compound interest and simple interest on a certain sum at 15% per annum for 3 years is Rs 283.50.
The difference between the compound interest and simple interest on a certain sum at 15% per annum for 3 years is Rs 283.50. Find the sum.
Given;
$\mathrm{CI}-\mathrm{SI}=\mathrm{Rs} 283.50$
$\mathrm{R}=15 \%$
$\mathrm{n}=3$ years
Let the sum be Rs $\mathrm{x}$.
We know that:
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$
$=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$
$=\mathrm{x}\left(1+\frac{15}{100}\right)^{3}$
$=\mathrm{x}(1.15)^{3}$ ...(1)
Also,
$\mathrm{SI}=\frac{\mathrm{PRT}}{100}=\frac{\mathrm{x}(15)(3)}{100}=0.45 \mathrm{x}$
$\mathrm{A}=\mathrm{SI}+\mathrm{P}=1.45 \mathrm{x} \quad \ldots(2)$
Thus, we have :
$\mathrm{x}(1.15)^{3}-1.45 \mathrm{x}=283.50 \quad[$ From $(1)$ and $(2)]$
$1.523 \mathrm{x}-1.45 \mathrm{x}=283.50$
$0.070875 \mathrm{x}=283.50$
$\mathrm{x}=\frac{283.50}{0.070875}$
=4,000
Thus, the sum is Rs 4,000 .