The diameter of a sphere is 42 cm. It is melted and drawn into a cylindrical wire of diameter 2.8 cm. Find the length of the wire.
Diameter of sphere $=42 \mathrm{~cm}$
Radius of sphere $=21 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \times 21 \times 21 \times 21 \mathrm{~cm}^{3}$
Diameter of wire $=2.8 \mathrm{~cm}$
Radius of wire $=1.4 \mathrm{~cm}$
Let the length of the wire be $/ \mathrm{cm}$.
Volume of the wire $=\pi r^{2} l=\pi \times 1.4 \times 1.4 \times 1$
The volume of the sphere is equal to the volume of the wire.
Therefore,
$\pi \times 1.4 \times 1.4 \times l=\frac{4}{3} \pi \times 21 \times 21 \times 21$
$l=\frac{4 \times 21 \times 21 \times 21}{3 \times 1.4 \times 1.4}=6300 \mathrm{~cm}=63 \mathrm{~m}$
So, the wire is 63 m long.