The diameter of a sphere is 42 cm. It is melted and drawn into a cylindrical wire of diameter 2.8 cm. Find the length of the wire.
Radius of the sphere $=\frac{42}{2}=21 \mathrm{~cm}$
Volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\left(\frac{4}{3} \pi \times 21 \times 21 \times 21\right) \mathrm{cm}^{3}$
Radius of the wire $=\frac{2.8}{2}=1.4 \mathrm{~cm}$
Let the length of the wire be $\mathrm{h} \mathrm{cm}$. Then,
Volume of the wire $=\pi r^{2} h$
$=\left(\pi \times \frac{14}{10} \times \frac{14}{10} \times h\right) \mathrm{cm}^{3}$
Therefore,
$\frac{4}{3} \pi \times 21 \times 21 \times 21=\pi \times \frac{14}{10} \times \frac{14}{10} \times h$
$\Rightarrow 12348=\frac{49}{25} \times h$
$\Rightarrow h=\left(\frac{12348 \times 25}{49}\right)$
$\Rightarrow h=6300 \mathrm{~cm}$
$\Rightarrow h=\left(\frac{6300}{100}\right) \mathrm{m}$
$\Rightarrow h=63 \mathrm{~m}$
Hence, the length of the wire is 63 m.