The diameter of a circle is increasing at the rate of 1 cm/sec. When its radius is π, the rate of increase of its area is
(a) $\pi \mathrm{cm}^{2} / \mathrm{Sec}$
(b) $2 \pi \mathrm{cm}^{2} / \mathrm{sec}$
(c) $\pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}$
(d) $2 \pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}^{2}$
(c) $\pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}$
Let $D$ be the diameter and $A$ be the area of the circle at any time $t .$ Then,
$A=\pi r^{2}$ (where $r$ is the radius of the cicle)
$\Rightarrow A=\pi \frac{D^{2}}{4}$ $\left[\because r=\frac{D}{2}\right]$
$\Rightarrow \frac{d A}{d t}=2 \pi \frac{D}{4} \frac{d D}{d t}$
$\Rightarrow \frac{d A}{d t}=\frac{\pi}{2} \times 2 \pi \times 1$ $\left[\because \frac{d D}{d t}=1 \mathrm{~cm} / \mathrm{sec}\right]$
$\Rightarrow \frac{d A}{d t}=\pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}$