The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the
parallelogram into two parts of equal area.
Given in a parallelogram $A B C D$, diagonals interect at $O$ and draw a line $P Q$, which intersects $A D$ and $B C$.
To prove $P Q$ divides the parallelogram $A B C D$ into two parts of equal area.
i.e. ar $(A B Q P)=\operatorname{ar}(C D P Q)$
Proof We know that, diagonals of a parallelogram bisect each other.
$\therefore \quad . O A=O C$ and $O B=O D$ ......(i)
In $\triangle A O B$ and $\triangle C O D$,
$O A=O C$
$O B=O D$ [from Eq. (i)]
and $\angle A O B=\angle C O D$ [vertically opposite angles]
$\therefore$ $\triangle A O B \cong \triangle C O D$ [by SAS congruence rule]
Then, $\operatorname{ar}(\Delta A O B)=\operatorname{ar}(\Delta C O D)$ .....(ii)
[since, congruent figures have equal area]
Now, in $\triangle A O P$ and $\triangle C O Q$.
$\angle P A O=\angle O C Q \quad$ [alternate interior angles]
$O A=O C \quad \quad$ [from Eq. (i)]
and $\quad \angle A O P=\angle C O Q \quad$ [vertically opposite angles]
$\therefore \quad \Delta A O P \cong \Delta C O Q \quad$ [by ASA congruence rule]
$\therefore \quad \operatorname{ar}(\Delta A O P)=\operatorname{ar}(\Delta C O Q)$ ... (iii)
[since, congruent fiqures have equal area]
Similarly, $\operatorname{ar}(\Delta P O D)=\operatorname{ar}(\triangle B O Q)$
Now, $\quad \operatorname{ar}(A B Q P)=\operatorname{ar}(\Delta C O Q)+\operatorname{ar}(\Delta C O D)+\operatorname{ar}(\triangle P O D)$
$=\operatorname{ar}(\Delta A O P)+\operatorname{ar}(\Delta A O B)+\operatorname{ar}(\Delta B O Q)$
[from Eqs. (ii), (iii) and (iv)]
$\Rightarrow \quad \operatorname{ar}(A B Q P)=\operatorname{ar}(C D P Q) \quad$ Hence proved.