The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to
$\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $x=\frac{1}{2}$ is :
Correct Option: , 4
Let $u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
Put $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
$\therefore u=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)$
$=\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x$
$\therefore \frac{d u}{d x}=\frac{1}{2} \times \frac{1}{\left(1+x^{2}\right)}$
Let $v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$
Put $x=\sin \phi \Rightarrow \phi=\sin ^{-1} x$
$v=\tan ^{-1}\left(\frac{2 \sin \phi \cos \phi}{\cos 2 \phi}\right)=\tan ^{-1}(\tan 2 \phi)$
$=2 \phi=2 \sin ^{-1} x$
$\frac{d v}{d x}=2 \frac{1}{\sqrt{1-x^{2}}}$
$\frac{d u}{d v}=\frac{d u / d x}{d v / d x}=\frac{\sqrt{1-x^{2}}}{4\left(1+x^{2}\right)}$
$\therefore\left(\frac{d u}{d v}\right)_{\left(x=\frac{1}{2}\right)}=\frac{\sqrt{3}}{10}$