Question:
The compound interest on Rs 1800 at 10% per annum for a certain period of time is Rs 378. Find the time in years.
Solution:
$\mathrm{CI}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}-\mathrm{P}$
$\Rightarrow 378=1,800\left(1+\frac{10}{100}\right)^{\mathrm{n}}-1,800$
$1,800\left(1+\frac{10}{100}\right)^{\mathrm{n}}=2,178$
$\left(1+\frac{10}{100}\right)^{\mathrm{n}}=\frac{2,178}{1,800}$
$(1.1)^{\mathrm{n}}=1.21$
$(1.1)^{\mathrm{n}}=(1.1)^{2}$
On comparing both the sides, we get:
n = 2
Thus, the required time is two years.