The complex number $z$ which satisfies the condition $\left|\frac{i+z}{i-z}\right|=1$ lies on
(a) circle x2 + y2 = 1
(b) the x−axis
(c) the y−axis
(d) the line x + y = 1
$\left|\frac{i+z}{i-z}\right|=1$
$\Rightarrow\left|\frac{i+z}{i-z}\right|^{2}=1^{2}$
$\Rightarrow\left(\frac{i+z}{i-z}\right) \overline{\left(\frac{i+z}{i-z}\right)}=1$
$\Rightarrow\left(\frac{i+z}{i-z}\right)\left(\frac{-i+\bar{z}}{-i-\bar{z}}\right)=1$
$\Rightarrow\left(\frac{-i^{2}-z i+\bar{z} i+z \bar{z}}{-i^{2}+z i-\bar{z} i+z \bar{z}}\right)=1$
$\Rightarrow-i^{2}-z i+\bar{z} i+z \bar{z}=-i^{2}+z i-\bar{z} i+z \bar{z}$
$\Rightarrow-z i+\bar{z} i=z i-\bar{z} i$
$\Rightarrow \bar{z} i+\bar{z} i=z i+z i$
$\Rightarrow 2 \bar{z} i=2 z i$
$\Rightarrow \bar{z}=z$
$\Rightarrow z$ is purely real
Hence, the correct option is (b).