The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Question:
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
(a) $\frac{1}{14}$
(b) $0.01$
(C) $\frac{1}{7}$
(d) none of these
Solution:
(a) $\frac{1}{14}$
Let $x$ be the radius of the circle and $y$ be its circumference.
$x=28 \mathrm{~cm}$
$\Delta x=0.01 \mathrm{~cm}$
$x=2 \pi r$
$y=\pi r^{2}=\pi \times \frac{x^{2}}{4 \pi^{2}}=\frac{x^{2}}{4 \pi}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2 \pi}$
$\Rightarrow \frac{\Delta y}{y}=\frac{x}{2 \pi y} d x=\frac{2}{x} \times 0.01$
$\Rightarrow \frac{\Delta y}{y} \times 100=\frac{2}{x}=\frac{1}{14}$
Hence, the percentage error in the area is $\frac{1}{14}$.