The circumcentre of the ΔABC is 0. Prove that ∠OBC + ∠BAC = 90°.
Given A circle is circumscribed on a ΔABC having centre O.
To prove $\quad \angle O B C+\angle B A C=90^{\circ}$
Construction Join $B O$ and $C O$.
Proof Let $\angle O B C=\angle O C B=\theta$ $\ldots(i)$
In $\triangle O B C, \quad \angle B O C+\angle O C B+\angle C B O=180^{\circ}$
[by angle sum property of a triangle is $180^{\circ}$ ]
$\Rightarrow \quad \angle B O C+\theta+\theta=180^{\circ}$
$\Rightarrow \quad \angle B O C=180^{\circ}-2 \theta$
We know that, in a circle, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
$\therefore \quad \angle B O C=2 \angle B A C$
$\Rightarrow \quad \angle B A C=\frac{\angle B O C}{2}=\frac{180^{\circ}-2 \theta}{2}=90^{\circ}-\theta$
$\Rightarrow \quad \angle B A C+\theta=90^{\circ}$
$\therefore \quad \angle B A C+\angle O B C=90^{\circ} \quad$ [from Eq. (i)]
Hence proved.