The central angles of two sectors of circles of radii 7 cm and 21 cm are respectively 120° and 40°. Find the areas of the two sectors as well as the
lengths of the corresponding arcs. What do you observe?
Let the lengths of the corresponding arc be l1 and l2
Given that, radius of sector $P O, O P=7 \mathrm{~cm}$
and radius of sector $\mathrm{AO}_{2} \mathrm{BA}=21 \mathrm{~cm}$
Central angle of the sector $P O, Q P=120^{\circ}$
and central angle of the sector $\mathrm{AO}_{2} \mathrm{BA}=40^{\circ}$
$\therefore$ Area of the sector with central angle $\mathrm{O}_{1}$
$=\frac{\pi r^{2}}{360^{\circ}} \times \theta=\frac{\pi(7)^{2}}{360^{\circ}} \times 120^{\circ}$
$=\frac{22}{7} \times \frac{7 \times 7}{360^{\circ}} \times 120$
$=\frac{22 \times 7}{3}=\frac{154}{3} \mathrm{~cm}^{2}$
and area of the sector with central angie $\mathrm{O}_{2}$
$=\frac{\pi r^{\circ}}{360^{\circ}} \times \theta=\frac{\pi(21)^{2}}{360^{\circ}} \times 40^{\circ}$
$=\frac{22}{7} \times \frac{21 \times 21}{360^{\circ}} \times 40^{\circ}$
$=\frac{22 \times 3 \times 21}{9}=22 \times 7=154 \mathrm{~cm}^{2}$
Now, corresponding arc length of the sector $P O, Q P$
$=$ Central angle $\times$ Radius of the sector
$=120^{\circ} \times 7 \times \frac{\pi}{180^{\circ}}$ $\left[\because \theta=\frac{l}{r}\right.$ and $\left.1^{\circ}=\frac{\pi}{180^{\circ}} R\right]$
$=\frac{2}{3} \times 7 \times \frac{22}{7}$
$=\frac{44}{3} \mathrm{~cm}$
and corresponding arc length of the sector $\mathrm{AO}_{2} \mathrm{BA}$
$=$ Central angle $\times$ Radius of the sector
$=40^{\circ} \times 21 \times \frac{\pi}{180^{\circ}} \quad\left[\therefore \theta=\frac{l}{r}\right.$ and $\left.1^{\circ}=\frac{\pi}{180^{\circ}} R\right]$
$=\frac{2}{9} \times 21 \times \frac{22}{7}$
$=\frac{2}{3} \times 22=\frac{44}{3} \mathrm{~cm}$
Hence, we observe that arc lengths of two sectors of two different circles may be equal but their area need not be equal.