Question:
The Cartesian equations of a line are $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+2}{3}=\frac{\mathrm{z}-5}{-1}$. Its vector equation is
A. $\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})$
B. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
C. $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
D. none of these
Solution: