The breadth of a room is twice its height, one half of its length and the volume of the room is 512 cu. dm. Find its dimensions.
Suppose that the breadth of the room $=\mathrm{x}$ dm
Since breadth is twice the height, breadth $=2 \times$ height
So, height of the room $=\frac{\text { breadth }}{2}=\frac{x}{2}$
Also, it is given that the breadth is half the length.
So, breadth $=\frac{1}{2} \times$ length
i. e., length $=2 \times$ breadth $=2 \times \mathrm{x}$
Since volume of the room $=512 \mathrm{cu} \mathrm{dm}$, we have :
Volume of a cuboid $=$ length $\times$ breadth $\times$ height
$\Rightarrow 512=2 \times \mathrm{x} \times \mathrm{x} \times \frac{\mathrm{x}}{2}$
$\Rightarrow 512=\mathrm{x}^{3}$
$\Rightarrow \mathrm{x}=\sqrt[3]{512}=8 \mathrm{dm}$
Hence, length of the room $=2 \times \mathrm{x}=2 \times 8=16 \mathrm{dm}$
Breadth of the room $=x=8 \mathrm{dm}$
Height of the the room $=\frac{\mathrm{x}}{2}=\frac{8}{2}=4 \mathrm{dm}$