The Boolean expression $(p \wedge q) \Rightarrow((r \wedge q) \wedge p)$ is equivalent to :
Correct Option: 1
$(p \wedge q) \Rightarrow((r \wedge q) \wedge p)$
$\sim(p \wedge q) \vee((r \wedge q) \wedge p)$
$\sim(\mathrm{p} \wedge \mathrm{q}) \vee((\mathrm{r} \wedge \mathrm{p}) \wedge(\mathrm{p} \wedge \mathrm{q})$
$\Rightarrow[\sim(p \wedge q) \vee(p \wedge q)] \wedge(\sim(p \wedge q) \vee(r \wedge p))$
$\Rightarrow t \wedge[\sim(p \wedge q) \vee(r \wedge p)]$
$\Rightarrow \sim(p \wedge q) \vee(r \wedge p)$
$\Rightarrow(p \wedge q) \Rightarrow(r \wedge p)$
Aliter :
given statement says
" if $\mathrm{p}$ and $\mathrm{q}$ both happen then $\mathrm{p}$ and $\mathrm{q}$ and $\mathrm{r}$ will happen"
it Simply implies
"If $\mathrm{p}$ and $\mathrm{q}$ both happen then 'r' too will happen "
i.e.
" if $\mathrm{p}$ and $\mathrm{q}$ both happen then $\mathrm{r}$ and $\mathrm{p}$ too will happen
i.e.
$(p \wedge q) \Rightarrow(r \wedge p)$