The bisectors of ∠B and ∠C of an isosceles ΔABC with AB = AC intersect each other at a point O. Show that the exterior angle adjacent to ∠ABC is equal to ∠BOC.
Given: In an isosceles ΔABC, AB = AC, BO and CO are the bisectors of ∠ABC and ∠ACB, respectively.
To prove: ∠ABD = ∠BOC
Construction: Produce CB to point D.
Proof:
In ΔABC,
$\Rightarrow \frac{1}{2} \angle A C B=\frac{1}{2} \angle A B C$
$\Rightarrow \angle O C B=\angle O B C \quad \ldots$. (i)
(Given, $B O$ and $C O$ are angle bisector of $\angle A B C$ and $\angle A C B$, respectively)
$\ln \triangle B O C$
$\angle O B C+\angle O C B+\angle B O C=180^{\circ} \quad$ (By angle sum property of triangle)
$\Rightarrow \angle O B C+\angle O B C+\angle B O C=180^{\circ} \quad[$ From (i) $]$
$\Rightarrow 2 \angle O B C+\angle B O C=180^{\circ}$
$\Rightarrow \angle A B C+\angle B O C=180^{\circ} \quad(B O$ is the angle bisector of $\angle A B C) \quad \ldots \ldots$ (ii)
Also, DBC is a straight line.
So, $\angle A B C+\angle D B A=180^{\circ} \quad$ (Linear pair) $\ldots$ (iii)
From (ii) and (iii), we get
$\angle A B C+\angle B O C=\angle A B C+\angle D B A$
$\therefore \angle B O C=\angle D B A$