The bisectors of any two adjacent angles of a parallelogram intersect at

Question:

The bisectors of any two adjacent angles of a parallelogram intersect at
(a) 40°
(b) 45°
(c) 60°
(d) 90°

Solution:

(d) 90° 

Explanation:
Sum of two adjacent angles = 180o

Now, sum of angle bisectors of two adjacent angles $=\frac{1}{2} \times\left(180^{\circ}\right)=90^{\circ}$

$\therefore$ Intersection angle of bisectors of two adjacent angles $=180^{\circ}-90^{\circ}=90^{\circ}$

 

 

Leave a comment