Question:
The base of an isosceles triangle measures 80 cm and its area is 360 cm2. Find the perimeter of the triangle.
Solution:
Given :
Base = 80 cm
Area $=360 \mathrm{~cm}^{2}$
Area of an isosceles triangle $=\left(\frac{1}{4} b \sqrt{4 a^{2}-b^{2}}\right)$
$\Rightarrow 360=\frac{1}{4} \times 80 \sqrt{4 a^{2}-80^{2}}$
$\Rightarrow 360=20 \sqrt{4 a^{2}-6400}$
$\Rightarrow 18=2 \sqrt{a^{2}-1600}$
$\Rightarrow 9=\sqrt{a^{2}-1600}$
Squaring both the sides, we get:
$\Rightarrow 81=a^{2}-1600$
$\Rightarrow a^{2}=1681$
$\Rightarrow a=41 \mathrm{~cm}$
Perimeter $=(2 a+b)$
$=[2(41)+80]=82+80=162 \mathrm{~cm}$
So, the perimeter of the triangle is 162 cm.