Question:
The base of a triangular field is three times its height and its area is 1350 m2. Find the base and height of the field.
Solution:
Let the base of the triangular field be $3 x \mathrm{~cm}$ and its height be $x \mathrm{~cm}$.
Then, area of the triangle $=\left(\frac{1}{2} \times 3 x \times x\right) m^{2}$
$=\frac{3 x^{2}}{2} \mathrm{~m}^{2}$
But it is given that the area of the triangular field is $1350 \mathrm{~m}^{2}$.
$\therefore \frac{3 x^{2}}{2}=1350$
$\Rightarrow x^{2}=\left(1350 \times \frac{2}{3}\right)$
$\Rightarrow x^{2}=900$
$\Rightarrow x=\sqrt{900}$
$\Rightarrow x=30 m$
Hence, the height of the field is $30 \mathrm{~m}$.
$I$ ts base $=(3 \times 30) \mathrm{m}=90 \mathrm{~m}$