Question:
The base of a right-angled triangle measures 48 cm and its hypotenuse measures 50 cm. Find the area of the triangle.
Solution:
Base = 48 cm
Hypotenuse =50 cm
First we will find the height of the triangle; let the height be 'p'.
$\Rightarrow(\text { Hypotenuse })^{2}=(\text { base })^{2}+p^{2}$
$\Rightarrow 50^{2}=48^{2}+p^{2}$
$\Rightarrow p^{2}=50^{2}-48^{2}$
$\Rightarrow p^{2}=(50-48)(50+48)$
$\Rightarrow p^{2}=2 \times 98$
$\Rightarrow p^{2}=196$
$\Rightarrow p=14 \mathrm{~cm}$
Area of the triangle $=\frac{1}{2} \times$ base $\times$ height
$=\frac{1}{2} \times 48 \times 14$
$=336 \mathrm{~cm}^{2}$