The argument of the complex number $(-1+i \sqrt{3})(1+i)(\cos \theta+i \sin \theta)$ is ____________________
For $z=(-1+i \sqrt{3})(1+i)(\cos \theta+i \sin \theta)$
$\arg z=\arg (-1+i \sqrt{3})+\arg (1+i)+\arg (\cos \theta+i \sin \theta)$
$\arg (-1+i \sqrt{3}):-z_{1}=-1+i \sqrt{3}$
$\theta_{1}=\tan ^{-1}\left|\left(\frac{\sqrt{3}}{1}\right)\right|$
$\theta=\frac{\pi}{3}$
Since z1 lies in II quadrant
$\Rightarrow \arg z_{1}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
$\arg (1+i):-z_{2}=1+i$
$\theta_{2}=\tan ^{-1}\left|\frac{1}{1}\right|=\tan ^{-1} 1$
i. e $\theta_{2}=\frac{\pi}{4}$
Since z2 lies in I quadrant
$\Rightarrow \arg z_{2}=\frac{\pi}{4}$
$\arg z_{3}=\arg (\cos \theta+i \sin \theta)=\theta$
$\Rightarrow \arg z=\arg z_{1}+\arg z_{2}+\arg z_{3}$
$\arg z=\frac{2 \pi}{3}+\frac{\pi}{4}+\theta=\left|\frac{11 \pi}{12}+\theta\right|$