The argument of

Question:

The argument of $\frac{1-i}{1+i}$ is

(a) $-\frac{\pi}{2}$

(b) $\frac{\pi}{2}$

(c) $\frac{3 \pi}{2}$

(d) $\frac{5 \pi}{2}$

Solution:

(a) $-\frac{\pi}{2}$

Let $z=\frac{1-i}{1+i}$

$\Rightarrow z=\frac{1-i}{1+i} \times \frac{1-i}{1-i}$

$\Rightarrow z=\frac{1+i^{2}-2 i}{1-i^{2}}$

$\Rightarrow z=\frac{1-1-2 i}{1+1}$

$\Rightarrow z=\frac{-2 i}{2}$

$\Rightarrow z=-i$

Since, $z$ lies on negative direction of imaginary axis.

Therefore, $\arg (z)=\frac{-\pi}{2}$

Leave a comment