Question:
The argument of $\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$ is
(a) 60°
(b) 120°
(c) 210°
(d) 240°
Solution:
(d) 240°
$\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$
Rationalising the denominator,
$\frac{1-i \sqrt{3}}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}}$
$=\frac{1+3 i^{2}-2 \sqrt{3} i}{1-3 i^{2}}$
$=\frac{-2-2 \sqrt{3} i}{4}$ $\left(\because i^{2}=-1\right)$
$=\frac{-1}{2}-i \frac{\sqrt{3}}{2}$
$\tan \alpha=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$
Then, $\tan \alpha=\left|\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}\right|$
$=\sqrt{3}$
$\Rightarrow \alpha=60^{\circ}$
Since the points $\left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)$ lie in the third quadrant, the argument is given by:
$\theta=180^{\circ}+60^{\circ}$
= 240°